Designcon 2000 Presentation

Signal Integrity: How to Measure It Correctly?

Mike Li Sr. Scientist, Ph.D. Jan Wilstrup Corporate Consultant

Why Are Correct Measurements of Signal Integrity (SI) Important?

- SI has many components/root causes
- SI root causes represent physical origins
- To diagnose and fix SI induced failure and performance degradation, details are needed
- SI simulation models need to be verified through correct measurements
- SI simulation alone can not warrant a working design

Outline

- Introduction
- Signal Integrity and Jitter
- Jitter Classification Scheme
- Jitter Models
- Autocorrelation Algorithm
- Tailfit Algorithm
- Practical Case Studies
- Conclusion (Patents for these algorithms are pending)

Wavecrest

Signal Integrity

What is signal integrity?

Any signal waveform deviation from ideal

Signal integrity can have many root causes

Jitter

• What is Jitter?

Any edge deviation from ideal

Jitter can have multi root causes

Signal Integrity Root Causes

- Crosstalk
- Ringing
- Reflection
- EMI
- Ground bounce
- Switch power supply noise
- Thermal noise
- White, flicker, random noise

- Jitter is Signal Integrity for an edge transition
- Jitter and Signal Integrity share common root causes
- Jitter is an important term to represent Signal Integrity

Jitter: Views from Signal Theory

- Jitter is a stochastical process
- Jitter has a distribution
- Jitter has many different components

Jitter Classification Scheme (Stochastic Process Based)

BU: Bounded uncorrelated

Jitter Components SI/Physical Root Causes

DCD+ISI

PJ

BUJ

RJ

Reflection

Modulation Crosstalk

White Noise

Limited **Bandwidth**

EMI

Thermal Noise

Ringing

Ground Bouncing Flicker & **Shot Noise**

Wavecrest

Jitter Models

DCD+ISI: Depends on specific jitter/SI source

PJ: Sinusoidal

BUJ: Truncated Gaussian

RJ: Gaussian or multi Gaussians

TJ (Total Jitter): Convolutions of all the independent jitter component models

Challenge: Jitter Separation

- In real practice, jitter components: deterministic and random, are always present
- High entropy state: expect difficulties in recovering signals
- Correct methods were lacking until recently

Jitter Separation, N-Span and Autocorrelation Approach

DCD+ISI Separation Based On Mean

 DCD+ISI (or DDJ) is obtained through pattern match and mean calculation

$$DDJ = MAX\{MAX(ABS(dt_n))\}$$

RJ & PJ Separation Based On Variance

 PJ and RJ is calculated through FFT of the auto-correlation record

$$VAR(\Delta t(n)) = c - 2 * Rxx(\Delta t(n))$$

Variance Spectrum

- PJ separation through "sliding" filter
- RJ calculation through "residue" integration

f

DJ-RJ Separation Based on Time-Domain *Histogram Distribution*

- What can we learn from a single jitter histogram distribution about DJ and RJ?
- Histogram is a scaled Probability Density Function (pdf) for jitter processes.
- To calculate the total pdf, individual pdfs needs to be *convolved*, not *added*.

Traditional Ways of Using Jitter Histogram: What Goes WRONG?

• Statistical standard deviation (an overestimate for RJ)

- pk-pk (sample size dependent TJ)
- In general (for a joint DJ and RJ histogram), these are not correct ways, and RJ, TJ numbers obtained from this statistics are WRONG!

What Does Peak-Peak Look Like?

• For a random Gaussian distribution

Standard Deviation (SD) \(\neq \text{RJ} \) sigma

 For a histogram distribution with both DJ and RJ components,

$$SD = \frac{1}{N-1} \sum_{n=1}^{N} (\Delta t - \Delta t_i)^2$$

$$> s^2$$

What Is The Correct Method: Tailfit!

 Total jitter pdf = DJ pdf * RJ pdf (* means *CONVOLUTION*)

• RJ pdf is a Gaussian:

$$p(\Delta t) = \frac{1}{\sqrt{2p}} e^{-\frac{(\Delta t - m)^2}{2s^2}}$$

Total pdf

RJ pdf

• *Tail parts* of distribution preserve information on RJ process.

Tailfit Algorithm

$$RJ = (\mathbf{s}_l + \mathbf{s}_r)/2$$

$$DJ = m_r - m_l$$

Monte Carlo Simulation

- 15% fluctuation -> only < 4% error in DJ and RJ
- For a 10,000 hits histogram, repeating the simulation 100 times, 1 σ error for DJ is ~5%, and ~17% for RJ.

Case Studies

a.) Clock Signal

b.) Data Signal (clock to data, BERT Equivalent)

c.) Data Signal (data to data, with pattern marker)

d.) Data Signal (data only, no pattern marker, or bit clock)

Wavecrest

Bit Error Rate (BER) Prediction

 System performance degraded if DJ/RJ are big

• BER curves are essential to quantify system reliability, performance, and stability.

• *ONLY* with DJ and RJ pdfs, may BER curve be calculated

BER Curves

Wavecrest

Conclusion

- New algorithms are developed to measure SI/jitter components based on either signal or a time series jitter histogram distributions
- These algorithms are accurate, repeatable, and robust
- It can be applied to SI measurements and SI tool/model verifications
- It can be applied to datacom, telecom, fiber optics, clock, PLL, data bus, jitter testing

